
arXiv: 2503.13795
In this work, we introduce BurTorch, a compact high-performance framework designed to optimize Deep Learning (DL) training on single-node workstations through an exceptionally efficient CPU-based backpropagation (Rumelhart et al., 1986; Linnainmaa, 1970) implementation. Although modern DL frameworks rely on compilerlike optimizations internally, BurTorch takes a different path. It adopts a minimalist design and demonstrates that, in these circumstances, classical compiled programming languages can play a significant role in DL research. By eliminating the overhead of large frameworks and making efficient implementation choices, BurTorch achieves orders-of-magnitude improvements in performance and memory efficiency when computing $\nabla f(x)$ on a CPU. BurTorch features a compact codebase designed to achieve two key goals simultaneously. First, it provides a user experience similar to script-based programming environments. Second, it dramatically minimizes runtime overheads. In large DL frameworks, the primary source of memory overhead for relatively small computation graphs $f(x)$ is due to feature-heavy implementations. We benchmarked BurTorch against widely used DL frameworks in their execution modes: JAX (Bradbury et al., 2018), PyTorch (Paszke et al., 2019), TensorFlow (Abadi et al., 2016); and several standalone libraries: Autograd (Maclaurin et al., 2015), Micrograd (Karpathy, 2020), Apple MLX (Hannun et al., 2023). For small compute graphs, BurTorch outperforms best-practice solutions by up to $\times 2000$ in runtime and reduces memory consumption by up to $\times 3500$. For a miniaturized GPT-3 model (Brown et al., 2020), BurTorch achieves up to a $\times 20$ speedup and reduces memory up to $\times 80$ compared to PyTorch.
46 pages, 7 figures, 19 tables
G.4, FOS: Computer and information sciences, 65Y10, Computer Science - Machine Learning, C.1.3, C.5.3, I.2.6, I.2.8, Computer Science - Mathematical Software, C.3, I.2.6; I.2.8; C.1.3; C.5.3; G.4; C.3, Mathematical Software (cs.MS), Machine Learning (cs.LG)
G.4, FOS: Computer and information sciences, 65Y10, Computer Science - Machine Learning, C.1.3, C.5.3, I.2.6, I.2.8, Computer Science - Mathematical Software, C.3, I.2.6; I.2.8; C.1.3; C.5.3; G.4; C.3, Mathematical Software (cs.MS), Machine Learning (cs.LG)
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
