
This paper deals with an industrial problem of machining line design, which consists in partitioning a given set of operations into several subsets corresponding to workstations and sequencing the operations to satisfy the technical requirements and achieve the best performance of the line. The problem has a complex set of constraints that include partial order on operations, part positioning, inclusion, exclusion, cycle time, and installation of parallel machines on a workstation. The problem is NP-hard and even finding a feasible solution can be a difficult task from the practical point of view. A parallel evolutionary algorithm (EA) is proposed and implemented for execution on a Graphics Processing Unit (GPU). The parallelization in the EA is done by working on several parents in one iteration and in multiple application of mutation operator to the same parent to produce the best offspring. The proposed approach is evaluated on large scale instances and demonstrated superior performance compared to the algorithms from the literature in terms of running time and ability to obtain feasible solutions. It is shown that in comparison to the traditional populational EA scheme the newly proposed algorithm is more suitable for advanced GPUs with a large number of cores.
split decoder, T58.6-58.62, parallel computing, partial order, Management information systems, cnc machines, setup times, scalability
split decoder, T58.6-58.62, parallel computing, partial order, Management information systems, cnc machines, setup times, scalability
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
