
pmid: 1663154
Retrieval studies of porous-coated prostheses have demonstrated deficient bony ingrowth in high percentages. Possible reasons for this are lack of initial mechanical stability and the presence of osteopenia. The authors studied ingrowth of osteopenic bone into titanium alloy (Ti) porous-coated implants with and without hydroxyapatite (HA) coating in an experimental dog model. Unilateral osteopenia of the knee with a 20% reduced bone density as judged by computed tomography (CT) scanning (P less than .001) was induced in 12 mature dogs by weekly intraarticular injections of Carragheenin into the right knee for 12 weeks, with the left knee serving as control. Ti porous-coated cylinders were inserted in press-fit bilaterally in the lateral femoral condyles in six dogs. HA-coated titanium plugs were implanted similarly in another sex-, age-, and weight-matched group of six dogs. Bony ingrowth after 4 weeks was significantly reduced for Ti implants in osteopenic bone compared to control bone, but HA-coated implants were covered by equal amounts of bone tissue. Bone-implant shear strength of Ti implants also was reduced in osteopenic bone compared to control bone. In control bone, the anchorage of Ti implants was stronger than HA-coated implants, whereas the fixation of Ti and HA-coated implants was equal in the osteopenic bone. The results demonstrate that the bony fixation of Ti porous-coated implants is weakened by the presence of experimentally induced osteopenia. However, the fixation of HA-coated implants was not affected by the osteopenic condition in the surrounding bone. The fixation of Ti and HA-coated implants was equal in osteopenic bone, whereas the fixation of Ti porous-coated implants was superior to that of HA-coated implants in control bone.
Metabolic/etiology, Titanium, implant, Surface Properties, Arthritis, hydroxyapatite, Prostheses and Implants, Arthritis/complications, Bone and Bones/metabolism, Bone and Bones, Biomechanical Phenomena, Bone Diseases, Metabolic, osteopenia, Dogs, Durapatite, arthritis, Bone Density, Osseointegration, Animals, titanium, Hydroxyapatites, Bone Diseases, bone ingrowth
Metabolic/etiology, Titanium, implant, Surface Properties, Arthritis, hydroxyapatite, Prostheses and Implants, Arthritis/complications, Bone and Bones/metabolism, Bone and Bones, Biomechanical Phenomena, Bone Diseases, Metabolic, osteopenia, Dogs, Durapatite, arthritis, Bone Density, Osseointegration, Animals, titanium, Hydroxyapatites, Bone Diseases, bone ingrowth
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 66 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
