
Abstract Global sensitivity analysis (GSA) can provide rich information for controlling output uncertainty. In practical applications, segmented models are commonly used to describe an abrupt model change. For segmented models, the complicated uncertainty propagation during the transition region may lead to different importance rankings of different GSA methods. If an unsuitable GSA method is applied, misleading results will be obtained, resulting in suboptimal or even wrong decisions. In this paper, four GSA indices, i.e., Sobol index, mutual information, delta index and PAWN index, are applied for a segmented fire spread model (Dry Eucalypt). The results show that four GSA indices give different importance rankings during the transition region since segmented characteristics affect different GSA indices in different ways. We suggest that analysts should rely on the results of different GSA indices according to their practical purpose, especially when making decisions for segmented models during the transition region. All of our source codes are publicly available at https://github.com/dirge1/GSA_segmented.
FOS: Computer and information sciences, Biology and other natural sciences, piecewise model, variance-based method, global sensitivity analysis, moment-independent method, Applications (stat.AP), Statistics - Applications, Operations research, mathematical programming, decision making
FOS: Computer and information sciences, Biology and other natural sciences, piecewise model, variance-based method, global sensitivity analysis, moment-independent method, Applications (stat.AP), Statistics - Applications, Operations research, mathematical programming, decision making
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 3 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
