
pmid: 9303264
We describe a neural simulator designed for simulating very large scale models of cortical architectures. This simulator, NEXUS, uses coarse-grain parallel computing by distributing computation and data onto multiple conventional workstations connected via a local area network. Coarse-grain parallel computing offers natural advantages in simulating functionally segregated neural processes. We partition a complete model into modules with locally dense connections--a module may represent a cortical area, column, layer, or functional entity. Asynchronous data communications among workstations are established through the Network File System, which, together with the implicit modularity, decreases communications overhead, and increases overall performance. Coarse-grain parallelism also benefits from the standardization of conventional workstations and LAN, including portability between generations and vendors.
Time Factors, Models, Neurological, Local Area Networks, Computing Methodologies, Computer Communication Networks, User-Computer Interface, Computer Systems, Computer Graphics, Database Management Systems, Humans, Computer Simulation, Neural Networks, Computer
Time Factors, Models, Neurological, Local Area Networks, Computing Methodologies, Computer Communication Networks, User-Computer Interface, Computer Systems, Computer Graphics, Database Management Systems, Humans, Computer Simulation, Neural Networks, Computer
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 4 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
