Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Mühendislik Bilimler...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Mühendislik Bilimleri ve Tasarım Dergisi
Article . 2025 . Peer-reviewed
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

CLASSIFICATION OF COGNITIVE WORKLOAD FROM EEG SIGNALS USING MULTIDIMENSIONAL FEATURES WITH MACHINE LEARNING AND DEEP LEARNING

Authors: Yavuz Bahadir Koca;

CLASSIFICATION OF COGNITIVE WORKLOAD FROM EEG SIGNALS USING MULTIDIMENSIONAL FEATURES WITH MACHINE LEARNING AND DEEP LEARNING

Abstract

This study aims to classify cognitive workload levels from EEG signals. EEG signals from 48 subjects under resting and task cognitive load conditions were analyzed. Noise and artifacts were removed by applying band-pass and notch filtering methods in the 1-50 Hz band on the EEG data. Then, the EEG data were segmented with the windowing technique in 256 and 512 sample sizes, and a total of 309 features based on time, frequency, and complexity were extracted. Using the obtained feature set, logistic regression (LR), support vector machines (SVM), k-nearest neighbor (k-NN), random forest (RF), XGBoost machine learning (ML) algorithms and deep neural networks (DNN), one-dimensional convolutional neural networks (1D-CNN) and long short-term memory (LSTM) deep learning (DL) methods were applied for multi-class classification. In the experimental results, the highest success was obtained in the XGBoost model with a 99.4% accuracy rate and 0.990 Cohen’s kappa value, and in DL methods, a 98.75% accuracy rate and 0.981 Kappa value in the LSTM model. This study reveals that integrating multidimensional features obtained from EEG signals with both ML algorithms and DL models provides high accuracy in cognitive workload classification.

Related Organizations
Keywords

Biyomedikal Bilimler ve Teknolojiler, Biomedical Diagnosis, Biomedical Sciences and Technology, EEG;Cognitive Workload;Machine Learning;Deep Learning;Feature Extraction;Biomedical., Reinforcement Learning, Pekiştirmeli Öğrenme, EEG;Kognitif İş Yükü;Makine Öğrenmesi;Derin Öğrenme;Özellik Çıkarımı;Biyomedikal., Biyomedikal Tanı

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
gold