Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ arXiv.org e-Print Ar...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
https://dx.doi.org/10.48550/ar...
Article . 2025
License: CC BY
Data sources: Datacite
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Identification of Design Recommendations for Augmented Reality Authors in Corporate Training

Authors: Graser, Stefan; Schrepp, Martin; Böhm, Stephan;

Identification of Design Recommendations for Augmented Reality Authors in Corporate Training

Abstract

Innovative technologies, such as Augmented Reality (AR), introduce new interaction paradigms, demanding the identification of software requirements during the software development process. In general, design recommendations are related to this, supporting the design of applications positively and meeting stakeholder needs. However, current research lacks context-specific AR design recommendations. This study addresses this gap by identifying and analyzing practical AR design recommendations relevant to the evaluation phase of the User-Centered Design (UCD) process. We rely on an existing dataset of Mixed Reality (MR) design recommendations. We applied a multi-method approach by (1) extending the dataset with AR-specific recommendations published since 2020, (2) classifying the identified recommendations using a NLP classification approach based on a pre-trained Sentence Transformer model, (3) summarizing the content of all topics, and (4) evaluating their relevance concerning AR in Corporate Training (CT) both based on a qualitative Round Robin approach with five experts. As a result, an updated dataset of 597 practitioner design recommendations, classified into 84 topics, is provided with new insights into their applicability in the context of AR in CT. Based on this, 32 topics with a total of 284 statements were evaluated as relevant for AR in CT. This research directly contributes to the authors' work for extending their AR-specific User Experience (UX) measurement approach, supporting AR authors in targeting the improvement of AR applications for CT scenarios.

9 pages, 1 table, 1 figure

Keywords

Human-Computer Interaction, Software Engineering (cs.SE), FOS: Computer and information sciences, Software Engineering, Human-Computer Interaction (cs.HC)

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Green