Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ IEEE Accessarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
IEEE Access
Article . 2019 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
IEEE Access
Article
License: CC BY NC ND
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
IEEE Access
Article . 2019
Data sources: DOAJ
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
DBLP
Article
Data sources: DBLP
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Search Condition-Hiding Query Evaluation on Encrypted Databases

Authors: Myungsun Kim; Hyung Tae Lee; San Ling; Shu Qin Ren; Benjamin Hong Meng Tan; Huaxiong Wang;

Search Condition-Hiding Query Evaluation on Encrypted Databases

Abstract

Private database query (PDQ) is a protocol between a client and a database server, designed for processing queries to encrypted databases. Specifically, PDQ enables a client to submit a search query and to learn a resulting set satisfying its search condition, without revealing sensitive information about a query statement. The whole query can be protected from the server, but for efficiency reasons known PDQ solutions generally consider to hide the constants only in a query statement. In this paper, we provide two fully homomorphic encryption (FHE)-based PDQ protocols that hide type of queries as well as the constants of a query statement. Particularly, our constructions focus on conjunctive, disjunctive, and threshold conjunctive queries. To this end, we first build a single compact logical expression to cover both conjunctive and disjunctive queries. On top of the logical expression, we design a PDQ protocol that enables to evaluate conjunctive and disjunctive queries without revealing any information on a given query. The second PDQ protocol comes from our observation that if a threshold conjunctive query has a particular threshold value, it results in either a conjunctive query or a disjunctive query. Because the PDQ protocol writes the three types of queries into a single polynomial expression, the resulting protocol can evaluate the three types of query statements without revealing any information on queries. To demonstrate their efficiency, we provide proof-of-concept implementation results of our proposed PDQ protocols. According to our rudimentary experiments, it takes 37.57 seconds to perform a query on 316 elements consisting of 16 attributes of 64 bits using Brakerski-Gentry-Vaikuntanathan's leveled FHE with SIMD techniques for 149-bit security, yielding an amortized rate of just 0.119 seconds per element

Country
Singapore
Keywords

:Mathematics [Science], Encrypted database, private queries, homomorphic encryption, Encrypted Database, Electrical engineering. Electronics. Nuclear engineering, Private Queries, TK1-9971

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    4
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
4
Average
Average
Average
Green
gold