
pmid: 36251903
The "curse of dimensionality" brings new challenges to the feature selection (FS) problem, especially in bioinformatics filed. In this paper, we propose a hybrid Two-Stage Teaching-Learning-Based Optimization (TS-TLBO) algorithm to improve the performance of bioinformatics data classification. In the selection reduction stage, potentially informative features, as well as noisy features, are selected to effectively reduce the search space. In the following comparative self-learning stage, the teacher and the worst student with self-learning evolve together based on the duality of the FS problems to enhance the exploitation capabilities. In addition, an opposition-based learning strategy is utilized to generate initial solutions to rapidly improve the quality of the solutions. We further develop a self-adaptive mutation mechanism to improve the search performance by dynamically adjusting the mutation rate according to the teacher's convergence ability. Moreover, we integrate a differential evolutionary method with TLBO to boost the exploration ability of our algorithm. We conduct comparative experiments on 31 public data sets with different data dimensions, including 7 bioinformatics datasets, and evaluate our TS-TLBO algorithm compared with 11 related methods. The experimental results show that the TS-TLBO algorithm obtains a good feature subset with better classification performance, and indicates its generality to the FS problems.
Machine Learning, Computational Biology, Algorithms
Machine Learning, Computational Biology, Algorithms
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 16 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
