Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ https://doi.org/10.1...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
https://doi.org/10.1145/371308...
Article . 2025 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
ETH Zürich Research Collection
Conference object . 2025
License: CC BY
Data sources: Datacite
https://dx.doi.org/10.48550/ar...
Article . 2025
License: CC BY
Data sources: Datacite
DBLP
Conference object
Data sources: DBLP
DBLP
Article
Data sources: DBLP
versions View all 6 versions
addClaim

The NIC should be part of the OS

Authors: Pengcheng Xu 0005; Timothy Roscoe;

The NIC should be part of the OS

Abstract

The network interface adapter (NIC) is a critical component of a cloud server occupying a unique position. Not only is network performance vital to efficient operation of the machine, but unlike compute accelerators like GPUs, the network subsystem must react to unpredictable events like the arrival of a network packet and communicate with the appropriate application end point with minimal latency. Current approaches to server stacks navigate a trade-off between flexibility, efficiency, and performance: the fastest kernel-bypass approaches dedicate cores to applications, busy-wait on receive queues, etc. while more flexible approaches appropriate to more dynamic workload mixes incur much greater software overhead on the data path. However, we reject this trade-off, which we ascribe to an arbitrary (and sub-optimal) split in system state between the OS and the NIC. Instead, by exploiting the properties of cache-coherent interconnects and integrating the NIC closely with the OS kernel, we can achieve something surprising: performance for RPC workloads better than the fastest kernel-bypass approaches without sacrificing the robustness and dynamic adaptation of kernel-based network subsystems.

Related Organizations
Keywords

Computer Science - Networking and Internet Architecture, Networking and Internet Architecture (cs.NI), FOS: Computer and information sciences, Computer Science - Operating Systems, Networking, Remote procedure calls, Operating Systems (cs.OS), Hardware Architecture (cs.AR), Serverless computing, Smart NICs, Cache coherence, Computer Science - Hardware Architecture

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Green
hybrid