Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ arXiv.org e-Print Ar...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
https://dx.doi.org/10.48550/ar...
Article . 2025
License: CC BY
Data sources: Datacite
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Self-Supervised Inductive Logic Programming

Authors: Patsantzis, Stassa;

Self-Supervised Inductive Logic Programming

Abstract

Inductive Logic Programming (ILP) approaches like Meta \-/ Interpretive Learning (MIL) can learn, from few examples, recursive logic programs with invented predicates that generalise well to unseen instances. This ability relies on a background theory and negative examples, both carefully selected with expert knowledge of a learning problem and its solutions. But what if such a problem-specific background theory or negative examples are not available? We formalise this question as a new setting for Self-Supervised ILP and present a new MIL algorithm that learns in the new setting from some positive labelled, and zero or more unlabelled examples, and automatically generates, and labels, new positive and negative examples during learning. We implement this algorithm in Prolog in a new MIL system, called Poker. We compare Poker to state-of-the-art MIL system Louise on experiments learning grammars for Context-Free and L-System languages from labelled, positive example strings, no negative examples, and just the terminal vocabulary of a language, seen in examples, as a first-order background theory. We introduce a new approach for the principled selection of a second-order background theory as a Second Order Definite Normal Form (SONF), sufficiently general to learn all programs in a class, thus removing the need for a backgound theory tailored to a learning task. We find that Poker's performance improves with increasing numbers of automatically generated examples while Louise, bereft of negative examples, over-generalises.

Keywords

Machine Learning, FOS: Computer and information sciences, Artificial Intelligence (cs.AI), Artificial Intelligence, Machine Learning (cs.LG)

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Green
Related to Research communities