Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Jyväskylä University...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Jyväskylä University Digital Archive
Conference object . 2025 . Peer-reviewed
License: CC BY NC ND
https://doi.org/10.24251/hicss...
Article . 2025 . Peer-reviewed
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

From PogChamps to Insights: Detecting Original Content in Twitch Chat

Authors: Lindroos, Jari; Peltonen, Jaakko; Välisalo, Tanja; Koskimaa, Raine; Toivanen, Ida;

From PogChamps to Insights: Detecting Original Content in Twitch Chat

Abstract

The vast volume of chat messages generated during esports events on Twitch represents a valuable source of data for understanding audience behavior. However, the sheer quantity and dynamic nature of this data make manual analysis impractical. This study addresses this challenge by introducing FinTwitchBERT, a model fine-tuned to classify Twitch chat messages into four categories based on their uniqueness. Our model demonstrates the ability to distinguish between original content, repetitive messages such as emote spamming, formulaic messages, and interactive commands chat participants use to interact with channel bots. Pre-trained on over 18 million Finnish Twitch chat messages and utilizing a combination of semi-supervised learning and iterative pseudo-labeling with human-in-the-loop validation, FinTwitchBERT achieves 97.42% accuracy on a test set of unseen chat messages with a limited initial dataset of only 7,529 manually annotated messages.

peerReviewed

Country
Finland
Related Organizations
Keywords

Nykykulttuurin tutkimus, chat, elektroninen urheilu, verkkokeskustelu, tekstinlouhinta, Data Analytics, sosiaalinen media, Data Mining, and Machine Learning for Social Media, pelikulttuuri, Computational Science, Twitch, Contemporary Culture, machine learning, koneoppiminen, verkkojuttelu, natural language processing, social media analysis, Laskennallinen tiede

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Green