Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ HRČAK - Portal of Cr...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Deep Learning-Based Method for Detecting Parkinson using 1D Convolutional Neural Networks and Improved Jellyfish Algorithms

Authors: M, Arogia Victor Paul; Sankar, Sharmila;

Deep Learning-Based Method for Detecting Parkinson using 1D Convolutional Neural Networks and Improved Jellyfish Algorithms

Abstract

Parkinson's disease (PD) is a common disease that predominantly impacts the motor scheme of the neural central scheme. While the primary symptoms of Parkinson's disease overlap with those of other conditions, an accurate diagnosis typically relies on extensive neurological, psychiatric, and physical examinations. Consequently, numerous autonomous diagnostic assistance systems, based on machine learning (ML) methodologies, have emerged to assist in evaluating patients with PD. This work proposes a novel deep learning-based classification of Parkinson's disease (PD) using voice recordings of people into normal, idiopathic Parkinson, and familial Parkinson. The improved jellyfish algorithm (IJFA) is utilized for hyper-parameter selection (HPS) of a 1D convolutional neural network (1D-CNN). The proposed technique makes use of the significant elements of 1D-CNN and filter-based feature selection models. Because of their strong performance in dealing with noisy data, the filter-based algorithms Relief, mRMR, and Fisher Score were chosen as the top choices. Using just 62 characteristics, the combination of deep relief features and deep learning was able to discriminate between people. The competence of the proposed 1D-CNN with IJFA method was determined through specific network metrics. The proposed 1D-CNN with IJFA method attains a total accuracy of 98.6%, which is comparatively better than the existing techniques. The proposed model produced around 9.5% improvements in accuracy, respectively, when compared to the data obtained without dimensionality reduction.

Keywords

Improved jellyfish algorithm, Convolutional Neural Network, Parkinson Disease Classification, Filter-based feature selection model

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    1
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
1
Average
Average
Average
gold