Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Briefings in Bioinfo...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Briefings in Bioinformatics
Article . 2024 . Peer-reviewed
License: CC BY NC
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

KGE-UNIT: toward the unification of molecular interactions prediction based on knowledge graph and multi-task learning on drug discovery

Authors: Zhang, Chengcheng; Zang, Tianyi; Zhao, Tianyi;

KGE-UNIT: toward the unification of molecular interactions prediction based on knowledge graph and multi-task learning on drug discovery

Abstract

Abstract The prediction of molecular interactions is vital for drug discovery. Existing methods often focus on individual prediction tasks and overlook the relationships between them. Additionally, certain tasks encounter limitations due to insufficient data availability, resulting in limited performance. To overcome these limitations, we propose KGE-UNIT, a unified framework that combines knowledge graph embedding (KGE) and multi-task learning, for simultaneous prediction of drug–target interactions (DTIs) and drug–drug interactions (DDIs) and enhancing the performance of each task, even when data availability is limited. Via KGE, we extract heterogeneous features from the drug knowledge graph to enhance the structural features of drug and protein nodes, thereby improving the quality of features. Additionally, employing multi-task learning, we introduce an innovative predictor that comprises the task-aware Convolutional Neural Network-based (CNN-based) encoder and the task-aware attention decoder which can fuse better multimodal features, capture the contextual interactions of molecular tasks and enhance task awareness, leading to improved performance. Experiments on two imbalanced datasets for DTIs and DDIs demonstrate the superiority of KGE-UNIT, achieving high area under the receiver operating characteristics curves (AUROCs) (0.942, 0.987) and area under the precision-recall curve ( AUPRs) (0.930, 0.980) for DTIs and high AUROCs (0.975, 0.989) and AUPRs (0.966, 0.988) for DDIs. Notably, on the LUO dataset where the data were more limited, KGE-UNIT exhibited a more pronounced improvement, with increases of 4.32$\%$ in AUROC and 3.56$\%$ in AUPR for DTIs and 6.56$\%$ in AUROC and 8.17$\%$ in AUPR for DDIs. The scalability of KGE-UNIT is demonstrated through its extension to protein–protein interactions prediction, ablation studies and case studies further validate its effectiveness.

Related Organizations
Keywords

Area Under Curve, Drug Discovery, Problem Solving Protocol, Learning, Drug Interactions, Neural Networks, Computer, Pattern Recognition, Automated

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    15
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
15
Top 10%
Average
Top 10%
Green
gold