Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Сучасний стан науков...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

ONLINE FUZZY CLUSTERING OF HIGH DIMENSION DATA STREAMS BASED ON NEURAL NETWORK ENSEMBLES

Authors: Bodyanskiy, Ye. V.; Perova, I.; Zhernova, P.;

ONLINE FUZZY CLUSTERING OF HIGH DIMENSION DATA STREAMS BASED ON NEURAL NETWORK ENSEMBLES

Abstract

The subject matter of the article is fuzzy clustering of high-dimensional data based on the ensemble approach, provided that a number and shape of clusters are not known. The goal of the work is to create the neuro-fuzzy approach for clustering data when the data stream is fed for online processing and a number and shape of clusters are unknown. The following tasks are solved in the article - the input feature space is compressed in the online mode; the model of neural network ensembles for data clustering is built; the ensemble of neuro-fuzzy networks for clustering high-dimensional data is developed; the approach for clustering data in the online mode is worked out. The following results are obtained - the main idea of the proposed approach is based on a modification of the fuzzy C-means algorithm. To reduce the dimension of the input space, the modified Hebb-Sanger network is suggested to be used; this net is characterized by the increased speed and is built on the basis of the modified Oja neurons. A speed-optimized learning algorithm for the Oja neuron is proposed. Such a network implements the method of principal components in the online mode with high speed. Conclusions. In the event the reduction-compression procedure cannot be used due to the probability of losing the physical meaning of the original space, a new clustering criterion was introduced; this criterion contains both a well-known polynomial fuzzifier and the weighment of individual components of the deviations of presented images from cluster centroids. The recurrent modification based on the algorithms proposed in this article is introduced. A mathematical model is developed to determine the quality of clustering with the use of the Xi-Beni index, which was modified for the online mode. The experimental results confirm the fact that the proposed system enables solving a wide range of Data Mining tasks when data sets are processed online, provided that a number and shape of clusters are not known and there is a large number of observations as well.

Keywords

кластеризация; метод нечетких C-средних; последовательный анализ главных компонент; ансамбль нейро-фаззи сетей; нейронная сеть Т. Кохонена; самообучение, кластерування; метод нечітких C-середніх; послідовний аналіз головних компонент; ансамбль нейро-фаззі мереж; нейронна мережа Т. Кохонена; самонавчання, TA177.4-185, the ensemble of neuro-fuzzy networks, fuzzy C-means method, T. Kohonen’s neural network, 004, clustering; fuzzy C-means method; sequential analysis of principal components; the ensemble of neuro-fuzzy networks; T. Kohonen’s neural network; self-learning, Engineering economy, sequential analysis of principal components, self-learning, clustering

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    2
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
2
Average
Average
Average
gold