Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Physica A Statistica...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Physica A Statistical Mechanics and its Applications
Article . 2002 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
zbMATH Open
Article . 2002
Data sources: zbMATH Open
https://dx.doi.org/10.48550/ar...
Article . 2000
License: arXiv Non-Exclusive Distribution
Data sources: Datacite
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Lagrangian statistical mechanics applied to non-linear stochastic field equations

Lagrangian statistical mechanics applied to nonlinear stochastic field equations
Authors: Edwards, Sam F.; Schwartz, Moshe;

Lagrangian statistical mechanics applied to non-linear stochastic field equations

Abstract

We consider non-linear stochastic field equations such as the KPZ equation for deposition and the noise driven Navier-Stokes equation for hydrodynamics. We focus on the Fourier transform of the time dependent two point field correlation, $��_{\bf{k}}(t)$. We employ a Lagrangian method aimed at obtaining the distribution function of the possible histories of the system in a way that fits naturally with our previous work on the static distribution. Our main result is a non-linear integro-differential equation for $��_{\bf{k}}(t)$, which is derived from a Peierls-Boltzmann type transport equation for its Fourier transform in time $��_{\bf{k}, ��}$. That transport equation is a natural extension of the steady state transport equation, we previously derived for $��_{\bf{k}}(0)$. We find a new and remarkable result which applies to all the non-linear systems studied here. The long time decay of $��_{\bf{k}}(t)$ is described by $��_{\bf{k}}(t) \sim \exp(-a|{\bf k}|t^��)$, where $a$ is a constant and $��$ is system dependent.

67 pages, 2 figures, corrected version

Related Organizations
Keywords

Stochastic methods applied to problems in equilibrium statistical mechanics, Statistical Mechanics (cond-mat.stat-mech), time dependent two-point correlation function, Fourier transform, FOS: Physical sciences, Applications of stochastic analysis (to PDEs, etc.), Condensed Matter - Statistical Mechanics, history distribution function

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    26
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
26
Average
Top 10%
Top 10%
Green
bronze