
Abstract In the paper an alternative method to solve the one-dimensional advective-diffusive equation describing the pollutants transport in river with dead zones is presented. Because very often transport in a small river can be treated as a 1D issue, then instead of numerical solution of the advection-diffusion equation an equivalent approach based on the convolution technique can be used. Consequently, for a given impulse response function the numerical calculations are required to compute a convolution only. The impulse response function is obtained as an analytical solution of the linear advection-diffusion equation for the Dirac delta function imposed as the boundary condition at the upstream end. Therefore, it represents the Gauss distribution and consequently, this approach is unreliable when the dead zones occur. To reproduce an asymmetric distribution of concentration along the channel axis an approximation of analytical impulse response function using the asymmetric Gumbel distribution is proposed. This approach valid for solution of the transport equation with constant coefficients is extended for piecewise constant coefficients. Convolution approach does not produce any numerical dissipation and dispersion errors typically generated by the methods based on the finite difference technique. Validation of the method using the results of field measurements confirmed its effectiveness.
1d pollution transport, dead zones, convolution, Hydraulic engineering, impulse response function, TC1-978
1d pollution transport, dead zones, convolution, Hydraulic engineering, impulse response function, TC1-978
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 2 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
