Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Neural Networksarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Neural Networks
Article . 2022 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
zbMATH Open
Article . 2022
Data sources: zbMATH Open
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Incremental learning algorithm for large-scale semi-supervised ordinal regression

Authors: Haiyan Chen; Yizhen Jia; Jiaming Ge; Bin Gu;

Incremental learning algorithm for large-scale semi-supervised ordinal regression

Abstract

As a special case of multi-classification, ordinal regression (also known as ordinal classification) is a popular method to tackle the multi-class problems with samples marked by a set of ranks. Semi-supervised ordinal regression (SSOR) is especially important for data mining applications because semi-supervised learning can make use of the unlabeled samples to train a high-quality learning model. However, the training of large-scale SSOR is still an open question due to its complicated formulations and non-convexity to the best of our knowledge. To address this challenging problem, in this paper, we propose an incremental learning algorithm for SSOR (IL-SSOR), which can directly update the solution of SSOR based on the KKT conditions. More critically, we analyze the finite convergence of IL-SSOR which guarantees that SSOR can converge to a local minimum based on the framework of concave-convex procedure. To the best of our knowledge, the proposed new algorithm is the first efficient on-line learning algorithm for SSOR with local minimum convergence guarantee. The experimental results show, IL-SSOR can achieve better generalization than other semi-supervised multi-class algorithms. Compared with other semi-supervised ordinal regression algorithms, our experimental results show that IL-SSOR can achieve similar generalization with less running time.

Related Organizations
Keywords

incremental learning, concave-convex procedure algorithm, Classification and discrimination; cluster analysis (statistical aspects), path-following algorithm, Learning and adaptive systems in artificial intelligence, Data Mining, Supervised Machine Learning, Algorithms, Computational aspects of data analysis and big data, semi-supervised ordinal regression

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    8
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
8
Top 10%
Average
Top 10%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!