
pmid: 35228149
As a special case of multi-classification, ordinal regression (also known as ordinal classification) is a popular method to tackle the multi-class problems with samples marked by a set of ranks. Semi-supervised ordinal regression (SSOR) is especially important for data mining applications because semi-supervised learning can make use of the unlabeled samples to train a high-quality learning model. However, the training of large-scale SSOR is still an open question due to its complicated formulations and non-convexity to the best of our knowledge. To address this challenging problem, in this paper, we propose an incremental learning algorithm for SSOR (IL-SSOR), which can directly update the solution of SSOR based on the KKT conditions. More critically, we analyze the finite convergence of IL-SSOR which guarantees that SSOR can converge to a local minimum based on the framework of concave-convex procedure. To the best of our knowledge, the proposed new algorithm is the first efficient on-line learning algorithm for SSOR with local minimum convergence guarantee. The experimental results show, IL-SSOR can achieve better generalization than other semi-supervised multi-class algorithms. Compared with other semi-supervised ordinal regression algorithms, our experimental results show that IL-SSOR can achieve similar generalization with less running time.
incremental learning, concave-convex procedure algorithm, Classification and discrimination; cluster analysis (statistical aspects), path-following algorithm, Learning and adaptive systems in artificial intelligence, Data Mining, Supervised Machine Learning, Algorithms, Computational aspects of data analysis and big data, semi-supervised ordinal regression
incremental learning, concave-convex procedure algorithm, Classification and discrimination; cluster analysis (statistical aspects), path-following algorithm, Learning and adaptive systems in artificial intelligence, Data Mining, Supervised Machine Learning, Algorithms, Computational aspects of data analysis and big data, semi-supervised ordinal regression
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 8 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
