Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao https://doi.org/10.1...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
https://doi.org/10.1109/ner492...
Article . 2021 . Peer-reviewed
License: IEEE Copyright
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

An Adversarial Variational Autoencoder Approach Toward Transfer Learning for mTBI Identification

Authors: Shiva Salsabilian; Laleh Najafizadeh;

An Adversarial Variational Autoencoder Approach Toward Transfer Learning for mTBI Identification

Abstract

Subject variability in mild traumatic brain injury (mTBI) data has often been an obstacle in accurate injury-related feature extraction and biomarker identification for successful mTBI diagnosis. To address this issue, we propose an adversarial variational autoencoder model as a novel regularization approach to extract subject-invariant representations for transfer learning in mTBI identification. The proposed method consists of a variational autoencoder with an attached adversarial network. The autoencoder attempts to learn the latent space mappings from neural activity, while the adversary network is used in a discriminative setting to detach the subject individuality from the representations. The trained encoder is then transferred to extract the representations from new subject's data. Several classifiers are utilized to classify the extracted representations into two categories of normal and mTBI. To evaluate the performance of the proposed method, recorded cortical activity of GCaMP6s transgenic calcium reporter mice before and after inducing an injury is used. Experimental results on cross-subject transfer learning exhibit the efficiency of the proposed framework by achieving 89.7% classification accuracy, suggesting the feasibility of the proposed method in learning invariant representations in mTBI data.

Related Organizations
  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    2
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
2
Average
Average
Average
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!