
doi: 10.1049/gtd2.13104
Abstract Recognition of partial discharge (PD) patterns is essential for insulation diagnosis of covered conductors in overhead lines. Current research has not sufficiently addressed the complex background noise in real environments, and most detection methods depend primarily on feature engineering or deep learning, suggesting potential for improvement in accuracy and efficiency. This has led the authors to propose a PD pattern recognition algorithm that integrates feature selection and deep learning. This algorithm incorporates the design of a discrete wavelet denoising function specifically tailored to the characteristics of PD for data preprocessing. It employs Bayesian optimization algorithms and light gradient boosting machines for characterizing corona discharge features. Furthermore, it develops multi‐scale clustering features and phase‐resolved features for feature fusion, and constructs insightful features based on the light gradient boosting machine. Finally, a novel deep learning model is formulated, demonstrating exceptional detection performance for early faults in covered conductors. Experimental results show that this algorithm attains an Matthews correlation coefficient score of 0.814, a 13.2% improvement over the baseline algorithm's 0.719, and a speed increase of 39.18%. The final accuracy amounts to 97.85%. This algorithm demonstrates exceptional performance in detecting early insulation faults in conductors.
wavelet transformation, partial discharge, TK1001-1841, Production of electric energy or power. Powerplants. Central stations, Distribution or transmission of electric power, pattern recognition, TK3001-3521, corona discharge
wavelet transformation, partial discharge, TK1001-1841, Production of electric energy or power. Powerplants. Central stations, Distribution or transmission of electric power, pattern recognition, TK3001-3521, corona discharge
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 9 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
