Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Electronic Archive o...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

EPR study of paramagnetic centers in SiO2:C: Zn nanocomposites obtained by infiltration of fumed silica with luminescent Zn(acac)2 solution

Дослідження методом ЕПР парамагнітних центрів у нанокомпозитах SiO2:C:Zn, отриманих інфільтрацією люмінесцентним розчином Zn(acac)2
Authors: Savchenko, D. V.; Memon, V. S.; Vasin, A. V.; Kysil, D. V.; Rusavsky, A. V.; Kuz, O. P.; Gareeva, F. M.; +1 Authors

EPR study of paramagnetic centers in SiO2:C: Zn nanocomposites obtained by infiltration of fumed silica with luminescent Zn(acac)2 solution

Abstract

Silica-carbon with zinc (SiO2:C:Zn) nanocomposites obtained via infiltration with aged luminescent zinc acetylacetonate (Zn(acac)2) ethanol solution of two concentrations (1 or 4%) into the fumed silica (SiO2) matrix have been studied using EPR within the temperature range 6…296 K before and after thermal annealing. The EPR spectrum of SiO2:C:Zn nanocomposites consists of three signals with the Lorentzian lineshape corresponding to paramagnetic centers with S = 1/2, which are related to carbon dangling bonds (CDB) (g = 2.0029(3)), silicon dangling bonds (g = 2.0062(3)) and oxygen-centered carbon-related radicals (CRR) (g = 2.0042(3)). A small EPR linewidth (<1 mT) observed for CDB and oxygen-centered CRR allows us to conclude that they are in the sp3-hybridized state. It was found that the temperature dependence of the EPR signal integrated intensity of the CDB and oxygen-centered CRR follows the Curie–Weiss law with a small positive value of the Curie–Weiss constant, which indicates that the weak ferromagnetic exchange interaction takes place in the spin system of CDB and oxygen-centered CRR. It was supposed that the carbon-related centers are clustered in SiO2:C:Zn nanocomposites. We assume that the oxygen-centered CRR in the sp3-hybridized state are associated with luminescent centers in previously reported aged Zn(acac)2/C2H5OH solution.

Country
Ukraine
Keywords

exchange interaction, вуглецевомісткі центри, електронний парамагнітний резонанс, carbon-related centers, обмінна взаємодія, обірвані зв’язки, electron paramagnetic resonance, dangling bonds, кремнезем-вуглецеві нанокомпозити, silica-carbon nanocomposites

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    1
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
1
Average
Average
Average
Green
gold