
Samples of brain signals collected by EEG sensors have inherent anti-correlations that are well modeled by negative edges in a finite graph. To differentiate epilepsy patients from healthy subjects using collected EEG signals, we build lightweight and interpretable transformer-like neural nets by unrolling a spectral denoising algorithm for signals on a balanced signed graph -- graph with no cycles of odd number of negative edges. A balanced signed graph has well-defined frequencies that map to a corresponding positive graph via similarity transform of the graph Laplacian matrices. We implement an ideal low-pass filter efficiently on the mapped positive graph via Lanczos approximation, where the optimal cutoff frequency is learned from data. Given that two balanced signed graph denoisers learn posterior probabilities of two different signal classes during training, we evaluate their reconstruction errors for binary classification of EEG signals. Experiments show that our method achieves classification performance comparable to representative deep learning schemes, while employing dramatically fewer parameters.
Machine Learning, FOS: Computer and information sciences, Machine Learning (cs.LG)
Machine Learning, FOS: Computer and information sciences, Machine Learning (cs.LG)
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
