Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ arXiv.org e-Print Ar...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
https://dx.doi.org/10.48550/ar...
Article . 2025
License: arXiv Non-Exclusive Distribution
Data sources: Datacite
DBLP
Article
Data sources: DBLP
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Evaluation and LLM-Guided Learning of ICD Coding Rationales

Authors: Mingyang Li; Viktor Schlegel; Tingting Mu; Wuraola Oyewusi; Kai Kang; Goran Nenadic;

Evaluation and LLM-Guided Learning of ICD Coding Rationales

Abstract

Automated clinical coding involves mapping unstructured text from Electronic Health Records (EHRs) to standardized code systems such as the International Classification of Diseases (ICD). While recent advances in deep learning have significantly improved the accuracy and efficiency of ICD coding, the lack of explainability in these models remains a major limitation, undermining trust and transparency. Current explorations about explainability largely rely on attention-based techniques and qualitative assessments by physicians, yet lack systematic evaluation using consistent criteria on high-quality rationale datasets, as well as dedicated approaches explicitly trained to generate rationales for further enhancing explanation. In this work, we conduct a comprehensive evaluation of the explainability of the rationales for ICD coding through two key lenses: faithfulness that evaluates how well explanations reflect the model's actual reasoning and plausibility that measures how consistent the explanations are with human expert judgment. To facilitate the evaluation of plausibility, we construct a new rationale-annotated dataset, offering denser annotations with diverse granularity and aligns better with current clinical practice, and conduct evaluation across three types of rationales of ICD coding. Encouraged by the promising plausibility of LLM-generated rationales for ICD coding, we further propose new rationale learning methods to improve the quality of model-generated rationales, where rationales produced by prompting LLMs with/without annotation examples are used as distant supervision signals. We empirically find that LLM-generated rationales align most closely with those of human experts. Moreover, incorporating few-shot human-annotated examples not only further improves rationale generation but also enhances rationale-learning approaches.

Keywords

FOS: Computer and information sciences, Artificial Intelligence (cs.AI), Artificial Intelligence

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Green
Related to Research communities