
In this work, we present a variant of DCA (Difference of Convex function Algorithm) with the aim to improve its convergence speed. The proposed algorithm, named Accelerated DCA (ADCA), consists in incorporating the Nesterov's acceleration technique into DCA. We first investigate ADCA for solving the standard DC program and rigorously study its convergence properties and the convergence rate. Secondly, we develop ADCA for a special case of the standard DC program whose the objective function is the sum of a differentiable with L-Lipschitz gradient function (possibly nonconvex) and a nonsmooth DC function. We exploit the special structure of the problem to propose an efficient DC decomposition for which the corresponding ADCA scheme is inexpensive. As an application, we consider the sparse binary logistic regression problem. Numerical experiments on several benchmark datasets illustrate the efficiency of our algorithm and its superiority over well-known methods.
[INFO] Computer Science [cs]
[INFO] Computer Science [cs]
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 20 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
