Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ YUHSpace (Yonsei Uni...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Biochemical and Biophysical Research Communications
Article . 2022 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Chitinase 3-like 1 is involved in the induction of IL-8 expression by double-stranded RNA in airway epithelial cells

Authors: Jae Woo Lee; Mi Na Kim; Eun Gyul Kim; Ji Su Leem; Seung Min Baek; Min Jung Kim; Kyung Won Kim; +1 Authors

Chitinase 3-like 1 is involved in the induction of IL-8 expression by double-stranded RNA in airway epithelial cells

Abstract

Viral respiratory infection causes inflammatory lung disease. Chitinase 3-like 1 (CHI3L1) contributes to airway inflammation, but its role in human airway epithelial cells following viral infection is unclear. Thus, we investigated whether CHI3L1 regulates inflammatory responses caused by viral infections in airway epithelial cells. Human bronchial epithelial cells, BEAS-2B, were stimulated with a synthetic analog of viral double-stranded RNA, polyinosinic:polycytidylic acid (poly(I:C)). To confirm the specific role of CHI3L1, CHI3L1 was knocked down in BEAS-2B cells using shRNA lentivirus. The expression of CHI3L1 and proinflammatory cytokines such as IL-8 and phosphorylation of mitogen-activated protein kinase (MAPK) pathways were analyzed. In addition to poly(I:C), BEAS-2B cells were infected with the human respiratory syncytial virus (RSV) A2 strain, and CHI3L1 and IL-8 expression was analyzed. Stimulating the cells with poly(I:C) increased CHI3L1 and IL-8 expression, whereas IL-8 expression was abrogated in CHI3L1 knockdown BEAS-2B cells. Poly(I:C) stimulation of BEAS-2B cells resulted in phosphorylation of MAPK pathways, and inhibition of MAPK pathways significantly abolished IL-8 secretion. Phosphorylation of MAPK pathways was diminished in CHI3L1 knockdown BEAS-2B cells. Infection with RSV increased CHI3L1 and IL-8 expression. IL-8 expression induced by RSV infection was abrogated in CHI3L1 knockdown cells. In conclusion, CHI3L1 may be involved in IL-8 secretion by regulating MAPK pathways during respiratory viral infections in airway epithelial cells.

Related Organizations
Keywords

Respiratory Syncytial Virus Infections / pathology, MAP Kinase Signaling System, 610, Lung / cytology*, Respiratory Syncytial Virus Infections, Epithelial Cells / virology, Cell Line, MAP Kinase Signaling System / drug effects, Airway epithelial cell, 616, Inflammation Mediators / metabolism, Human / drug effects, MAPK signaling Pathway, Humans, Chitinase-3-Like Protein 1, Phosphorylation, Lung, Poly I-C / pharmacology, RNA, Double-Stranded, Phosphorylation / drug effects, Epithelial Cells / drug effects, Interleukin-8, Epithelial Cells / metabolism*, Epithelial Cells, Chitinase-3-Like Protein 1 / metabolism*, Respiratory Syncytial Virus Infections / virology, Double-Stranded / metabolism*, Chitinase 3-like 1, Cytokines / metabolism, Poly I-C, Human / physiology, Respiratory Syncytial Virus, Human, RNA, Cytokines, Interleukin-8 / metabolism*, Respiratory Syncytial Virus, Inflammation Mediators

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    6
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
6
Top 10%
Average
Top 10%
Green