
This paper addresses the particularities in optimal control of the uranium extraction-scrubbing operation in the PUREX process. The control problem requires optimally stabilizing the system at a desired solvent saturation level, guaranteeing constraints, disturbance rejection, and adapting to set point variations. A qualified simulator named PAREX was developed by the French Alternative Energies and Atomic Energy Commission (CEA) to simulate liquid-liquid extraction operations in the PUREX process. However, since the mathematical model is complex and is described by a system of nonlinear, stiff, high-dimensional differential-algebraic equations (DAE), applying optimal control methods will lead to a large-scale nonlinear programming problem with a huge computational burden. The solution we propose in this work is to train a neural network to predict the process outputs using the measurement history. This neural network architecture, which employs the long short-term memory (LSTM), linear regression and logistic regression networks, allows reducing the number of state variables, thus reducing the complexity of the optimization problems in the control scheme. Furthermore, nonlinear model predictive control (NMPC) and moving horizon estimation (MHE) problems are developed and solved using the PSO (Particle Swarm Optimization) algorithm. Simulation results show that the proposed adaptive optimal control scheme satisfies the requirements of the control problem and provides promise for experimental testing.
Nonlinear Moving Horizon Estimation, Liquid-liquid Extraction, Particle Swarm Optimization, [CHIM.GENI] Chemical Sciences/Chemical engineering, FOS: Electrical engineering, electronic engineering, information engineering, PUREX, Systems and Control (eess.SY), Nonlinear Model Predictive Control, Electrical Engineering and Systems Science - Systems and Control, PAREX
Nonlinear Moving Horizon Estimation, Liquid-liquid Extraction, Particle Swarm Optimization, [CHIM.GENI] Chemical Sciences/Chemical engineering, FOS: Electrical engineering, electronic engineering, information engineering, PUREX, Systems and Control (eess.SY), Nonlinear Model Predictive Control, Electrical Engineering and Systems Science - Systems and Control, PAREX
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
