Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Psychological Medici...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Psychological Medicine
Article . 2025 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Psychological Medicine
Article . 2025
License: CC BY
versions View all 6 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Characterising symptomatic substates in individuals on the psychosis continuum: a hidden Markov modelling approach

a hidden Markov modelling approach
Authors: Isabelle Scott; Emmeke Aarts; Cassandra Wannan; Caroline X. Gao; Scott Clark; Simon Hartmann; Josh Nguyen; +14 Authors

Characterising symptomatic substates in individuals on the psychosis continuum: a hidden Markov modelling approach

Abstract

Abstract Background To improve early intervention and personalise treatment for individuals early on the psychosis continuum, a greater understanding of symptom dynamics is required. We address this by identifying and evaluating the movement between empirically derived attenuated psychotic symptomatic substates—clusters of symptoms that occur within individuals over time. Methods Data came from a 90-day daily diary study evaluating attenuated psychotic and affective symptoms. The sample included 96 individuals aged 18–35 on the psychosis continuum, divided into four subgroups of increasing severity based on their psychometric risk of psychosis, with the fourth meeting ultra-high risk (UHR) criteria. A multilevel hidden Markov modelling (HMM) approach was used to characterise and determine the probability of switching between symptomatic substates. Individual substate trajectories and time spent in each substate were subsequently assessed. Results Four substates of increasing psychopathological severity were identified: (1) low-grade affective symptoms with negligible psychotic symptoms; (2) low levels of nonbizarre ideas with moderate affective symptoms; (3) low levels of nonbizarre ideas and unusual thought content, with moderate affective symptoms; and (4) moderate levels of nonbizarre ideas, unusual thought content, and affective symptoms. Perceptual disturbances predominantly occurred within the third and fourth substates. UHR individuals had a reduced probability of switching out of the two most severe substates. Conclusions Findings suggest that individuals reporting unusual thought content, rather than nonbizarre ideas in isolation, may exhibit symptom dynamics with greater psychopathological severity. Individuals at a higher risk of psychosis exhibited persistently severe symptom dynamics, indicating a potential reduction in psychological flexibility.

Keywords

Adult, Male, Adolescent, Psychosis continuum, clinical high risk, Prodromal Symptoms, Severity of Illness Index, Symptom dynamics, Young Adult, multilevel modelling, Humans, psychosis, psychosis states, Affective Symptoms, Ecological momentary assessment, psychosis continuum, symptom dynamics, ultra high risk, Ambulatory assessment, Clinical high risk, Psychosis, Markov Chains, Psychotic Disorders, Hidden markov model, Ultra high risk, Original Article, Female, Multilevel modelling, Affective Symptoms/physiopathology, Daily diary study, Psychotic Disorders/diagnosis, Psychosis states

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Green
hybrid