
Data clustering is one of the most important and fundamental tasks of machine learning. Data clustering aims at dividing a set of objects into several groups according to their similarities. In recent years Density Peaks Clustering (DPC) was introduced as a fast and non-iterative clustering method which does not require any previous knowledge about the number of clusters. However, this method suffers from a few shortcomings such as its sensitivity to the user-adjustable parameter, disability to consider data distribution, and inappropriate center selection when facing complex clusters. To overcome these issues, in this paper, a novel density-based peaks clustering method called GDPCS is proposed. By employing the properties of the mutual neighborhood graph and shortest path distance, the proposed method considers the data distribution, present a better shape of clusters, and reduces the clusters' connectivity. To demonstrate the proposed method's effectiveness and superiority, many experiments were performed on both real-world and synthetic datasets. The obtained results show that the proposed method has achieved an acceptable result on imbalanced and complex shaped clusters and can detect more appropriate centers.
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 1 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
