Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Experimental Hematol...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Experimental Hematology
Article . 2019 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Experimental Hematology
Article
License: CC BY
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Apollo
Article . 2019
License: CC BY NC ND
Data sources: Datacite
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
PubMed Central
Other literature type . 2019
License: CC BY
Data sources: PubMed Central
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Apollo
Article . 2019
License: CC BY NC ND
Data sources: Apollo
https://dx.doi.org/10.60692/px...
Other literature type . 2019
Data sources: Datacite
https://dx.doi.org/10.60692/jv...
Other literature type . 2019
Data sources: Datacite
versions View all 7 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Machine learning predicts putative hematopoietic stem cells within large single-cell transcriptomics data sets

يتنبأ التعلم الآلي بالخلايا الجذعية المكونة للدم المفترضة ضمن مجموعات كبيرة من بيانات النسخ أحادية الخلية
Authors: Fiona Hamey; Berthold Göttgens;

Machine learning predicts putative hematopoietic stem cells within large single-cell transcriptomics data sets

Abstract

Les cellules souches hématopoïétiques (CSH) sont une source et un réservoir essentiels pour l'hématopoïèse normale, et leur fonction est compromise dans de nombreux troubles sanguins. La recherche sur les CSH a bénéficié du développement récent de technologies de profilage moléculaire unicellulaire, où le séquençage de l'ARN unicellulaire (scRNA-seq) en particulier est rapidement devenu une méthode établie pour profiler les CSH et les populations hématopoïétiques associées. La définition classique des CSH repose sur des tests de transplantation, qui ont été utilisés pour valider la fonction des CSH pour les populations cellulaires définies par cytométrie en flux. Les informations de cytométrie en flux pour les cellules uniques, cependant, n'est pas disponible pour de nombreuses nouvelles méthodes scRNA-seq à haut débit, soulignant ainsi le besoin urgent d'établir des moyens alternatifs pour identifier les CSH probables dans de grands ensembles de données scRNA-seq.Pour résoudre ce problème, nous avons testé une gamme d'approches d'apprentissage automatique et développé un outil, hscScore, pour noter les transcriptomes unicellulaires de la moelle osseuse murine en fonction de leur similitude avec les profils d'expression génique des CSH validés.Nous avons évalué hscScore dans les données scRNA-seq de différents laboratoires, ce qui nous a permis d'établir une méthode robuste qui fonctionne dans différentes technologies.Pour faciliter une large adoption de hscScore par la communauté plus large de l'hématopoïèse, nous avons rendu le modèle formé et le code d'exemple disponibles gratuitement en ligne. En résumé, notre méthode hscScore fournit une identification rapide des CSH de la moelle osseuse de souris à partir de mesures de scRNA-seq et représente un outil largement utile pour l'analyse des données d'expression génique unicellulaire.

Las células madre hematopoyéticas (HSC) son una fuente y reservorio esencial para la hematopoyesis normal, y su función se ve comprometida en muchos trastornos sanguíneos. La investigación de HSC se ha beneficiado del reciente desarrollo de tecnologías de perfiles moleculares unicelulares, donde la secuenciación de ARN unicelular (scRNA-seq) en particular se ha convertido rápidamente en un método establecido para perfilar HSC y poblaciones hematopoyéticas relacionadas. La definición clásica de HSC se basa en ensayos de trasplante, que se han utilizado para validar la función de HSC para poblaciones celulares definidas por citometría de flujo. Sin embargo, la información de citometría de flujo para células individuales, no está disponible para muchos nuevos métodos de scRNA-seq de alto rendimiento, lo que destaca la necesidad urgente de establecer formas alternativas de identificar las HSC probables dentro de grandes conjuntos de datos de scRNA-seq. Para abordar esto, probamos una gama de enfoques de aprendizaje automático y desarrollamos una herramienta, hscScore, para puntuar transcriptomas unicelulares de médula ósea murina en función de su similitud con los perfiles de expresión génica de HSC validadas. Evaluamos hscScore en datos de scRNA-seq de diferentes laboratorios, lo que nos permitió establecer un método robusto que funciona en diferentes tecnologías. Para facilitar una amplia adopción de hscScore por la comunidad de hematopoyesis más amplia, hemos hecho que el modelo entrenado y el código de ejemplo estén disponibles gratuitamente en línea. En resumen, nuestro método hscScore proporciona una identificación rápida de HSC de médula ósea de ratón a partir de mediciones de scRNA-seq y representa una herramienta ampliamente útil para el análisis de datos de expresión génica unicelular.

Hematopoietic stem cells (HSCs) are an essential source and reservoir for normal hematopoiesis, and their function is compromised in many blood disorders.HSC research has benefitted from the recent development of single-cell molecular profiling technologies, where single-cell RNA sequencing (scRNA-seq) in particular has rapidly become an established method to profile HSCs and related hematopoietic populations.The classic definition of HSCs relies on transplantation assays, which have been used to validate HSC function for cell populations defined by flow cytometry.Flow cytometry information for single cells, however, is not available for many new high-throughput scRNA-seq methods, thus highlighting an urgent need for the establishment of alternative ways to pinpoint the likely HSCs within large scRNA-seq data sets.To address this, we tested a range of machine learning approaches and developed a tool, hscScore, to score single-cell transcriptomes from murine bone marrow based on their similarity to gene expression profiles of validated HSCs.We evaluated hscScore across scRNA-seq data from different laboratories, which allowed us to establish a robust method that functions across different technologies.To facilitate broad adoption of hscScore by the wider hematopoiesis community, we have made the trained model and example code freely available online.In summary, our method hscScore provides fast identification of mouse bone marrow HSCs from scRNA-seq measurements and represents a broadly useful tool for analysis of single-cell gene expression data.

الخلايا الجذعية المكونة للدم (HSCs) هي مصدر وخزان أساسي لتكوين الدم الطبيعي، ووظيفتها معرضة للخطر في العديد من اضطرابات الدم. استفادت أبحاث HSC من التطور الأخير لتقنيات التنميط الجزيئي أحادية الخلية، حيث أصبح تسلسل الحمض النووي الريبي أحادي الخلية (scRNA - seq) على وجه الخصوص بسرعة طريقة راسخة لتشكيل صورة الخلايا الجذعية المكونة للدم والمجموعات المكونة للدم ذات الصلة. يعتمد التعريف الكلاسيكي للخلايا الجذعية المكونة للدم على فحوصات الزرع، والتي تم استخدامها للتحقق من صحة وظيفة الخلايا الجذعية المكونة للدم لمجموعات الخلايا المحددة بواسطة قياس التدفق الخلوي. ومع ذلك، فإن معلومات قياس التدفق الخلوي للخلايا المفردة، غير متاح للعديد من طرق scRNA - seq الجديدة عالية الإنتاجية، مما يسلط الضوء على الحاجة الملحة لإنشاء طرق بديلة لتحديد HSCs المحتملة داخل مجموعات بيانات scRNA - seq الكبيرة. ولمعالجة ذلك، اختبرنا مجموعة من مناهج التعلم الآلي وطورنا أداة، hscScore، لتسجيل النسخ أحادي الخلية من نخاع عظم الفئران بناءً على تشابهها مع ملفات التعبير الجيني لـ HSC المعتمدة. قمنا بتقييم hscScore عبر بيانات scRNA - seq من مختبرات مختلفة، مما سمح لنا بإنشاء طريقة قوية تعمل عبر تقنيات مختلفة. لتسهيل الاعتماد على نطاق واسع من hscScore من قبل مجتمع تكون الدم الأوسع، لقد جعلنا النموذج المدرب والرمز النموذجي متاحين مجانًا عبر الإنترنت. باختصار، توفر طريقتنا hscScore تحديدًا سريعًا لـ HSCs لنخاع عظم الفأر من قياسات scRNA - seq وتمثل أداة مفيدة على نطاق واسع لتحليل بيانات التعبير الجيني أحادية الخلية.

Country
United Kingdom
Keywords

Cell biology, Immunology, Hematopoietic stem cell, Gene, Article, Single-Cell, Machine Learning, Computational biology, Mice, Identification (biology), Biochemistry, Genetics and Molecular Biology, Health Sciences, Genetics, Animals, Cell Heterogeneity, Bone marrow, Hematopoietic Cell Transplantation, Flow cytometry, Transcriptomics, Molecular Biology, Biology, Mice, Knockout, Immunology and Microbiology, Transplantation, Stem cell, Sequence Analysis, RNA, Gene Expression Profiling, Macrophage Activation and Polarization, FOS: Clinical medicine, Botany, Life Sciences, Hematology, Comprehensive Integration of Single-Cell Transcriptomic Data, Hematopoietic Stem Cells, Haematopoiesis, Function (biology), FOS: Biological sciences, Medicine, Hematopoietic Stem Cell Biology, Surgery, Gene expression, Transcriptome

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    41
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
41
Top 10%
Top 10%
Top 10%
Green
hybrid