Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ arXiv.org e-Print Ar...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Journal of Computational and Applied Mathematics
Article . 2025 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
zbMATH Open
Article . 2025
Data sources: zbMATH Open
https://dx.doi.org/10.48550/ar...
Article . 2024
License: arXiv Non-Exclusive Distribution
Data sources: Datacite
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Improving the accuracy and consistency of the energy quadratization method with an energy-optimized technique

Authors: Xiaoqing Meng; Aijie Cheng; Zhengguang Liu;

Improving the accuracy and consistency of the energy quadratization method with an energy-optimized technique

Abstract

We propose an energy-optimized invariant energy quadratization method to solve the gradient flow models in this paper, which requires only one linear energy-optimized step to correct the auxiliary variables on each time step. In addition to inheriting the benefits of the baseline and relaxed invariant energy quadratization method, our approach has several other advantages. Firstly, in the process of correcting auxiliary variables, we can directly solve linear programming problem by the energy-optimized technique, which greatly simplifies the nonlinear optimization problem in the previous relaxed invariant energy quadratization method. Secondly, we construct new linear unconditionally energy stable schemes by applying backward Euler formulas and Crank-Nicolson formula, so that the accuracy in time can reach the first- and second-order. Thirdly, comparing with relaxation technique, the modified energy obtained by energy-optimized technique is closer to the original energy, meanwhile the accuracy and consistency of the numerical solutions can be improved. Ample numerical examples have been presented to demonstrate the accuracy, efficiency and energy stability of the proposed schemes.

35 pages, 39 figures

Related Organizations
Keywords

unconditional energy stability, invariant energy quadratization, Numerical Analysis (math.NA), gradient flow models, energy-optimized technique, Initial-boundary value problems for second-order parabolic equations, Finite difference methods for initial value and initial-boundary value problems involving PDEs, FOS: Mathematics, Nonlinear parabolic equations, Initial-boundary value problems for higher-order parabolic equations, Finite element, Rayleigh-Ritz and Galerkin methods for initial value and initial-boundary value problems involving PDEs, Mathematics - Numerical Analysis, Stability and convergence of numerical methods for initial value and initial-boundary value problems involving PDEs, numerical experiments, 65M12, 35K20, 35K35, 35K55, 65Z05

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    1
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
1
Average
Average
Average
Green