Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Agrometeo...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Agrometeorology
Article . 2024 . Peer-reviewed
License: CC BY NC SA
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Agrometeorology
Article . 2024
Data sources: DOAJ
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Weather based paddy yield prediction using machine learning regression algorithms

Authors: DHINAKARAN SAKTHIPRIYA; THANGAVEL CHANDRAKUMAR;

Weather based paddy yield prediction using machine learning regression algorithms

Abstract

Paddy is a major crop in India which is highly affected by the weather variables resulting in drastic reduction of its yield; adverse all the variables drastically reduce the paddy yield. In this research, machine learning model was developed for prediction of paddy yield production by linear regression (LR), random forest regression (RFR), support vector regression (SVR), cat boost regression (CBR), and hybrid machine learning with variance inflation factor (VIF) LR-VIF, RFR-VIF, SVR-VIF, and CBR-VIF techniques. The dataset consists of variables (weather) for more than 15 years collected for the study area which is Madurai district, Tamil Nadu in India. Analysis was carried out by fixing 70% of data calibration & remaining 30% for validation in Jupyter notebook (Python programming). Results showed that CBR-VIF performed having nRMSE value 1.23 to 1.40% for Madurai South, nRMSE value 0.56 to 1.40% for Melur, nRMSE value 1.10 to 1.25% for Usilampatti, and nRMSE value 0.75 to 1.10% for Thirumangalam. The hybrid model of CBR along with VIF and then CBR model has shown improvement with high influenced weather variables such as maximum temperature, minimum temperature, rainfall normal, and actual rainfall.

Related Organizations
Keywords

Linear regression (LR), S, Paddy seed, Random Forest regression (RFR), Hybrid machine learning model, Support vector regression (SVR), Agriculture, Cat boost regression (CBR).

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    2
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
2
Top 10%
Average
Average
gold