Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Düzce Üniversitesi B...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Düzce Üniversitesi Bilim ve Teknoloji Dergisi
Article . 2024 . Peer-reviewed
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Performance Analysis of Firewall and Virtual Private Network (VPN) Usage in Video Conferencing Applications

Authors: Serdar Arpacı; Arafat Şentürk;

Performance Analysis of Firewall and Virtual Private Network (VPN) Usage in Video Conferencing Applications

Abstract

Rapid developments in information technologies have made these technologies indispensable elements of our lives with application areas such as e-government, e-commerce, e-health, e-learning. Particularly the global Covid-19 pandemic period has led to forced improvements in video conferencing applications, which enable users in different locations at the same time to communicate via video and audio over internet. Developments in technology, which cause the rapid increase of applications served over internet, also cause a significant increase in the number of devices connected to internet and the data traffic flowing over internet. As a result, the security needs of applications used over internet, such as video conferencing applications, are increasing in proportion to the increasing security threat risks. The use of firewall and VPN (Virtual Private Network) are the most basic security solutions for applications used over internet. A firewall is a device, which is positioned between a corporate network and the internet cloud, filtering incoming and outgoing traffic to and from the network according to defined rules. VPN, on the other hand, provides a secure point-to-point connection to a corporate network through the internet cloud. In this study, the effects of firewall and VPN usage in video conferencing applications were analyzed in terms of application performance. In video conferencing applications; since there is a real-time, bidirectional and large-scale data flow between the participants, delay and packet loss determine the performance of these applications. Analyzing how these applications perform when used with firewalls and VPN will guide further improvements in network protocols, components and related applications. In the study in which the simulation method was used, the data obtained from the simulation of different scenarios created with the OPNET tool were analyzed comparatively.

Related Organizations
Keywords

Technology, Q1-390, Science (General), ağ performansı, T, Science, Q, network performance, video conferencing, video konferans, TA1-2040, Engineering (General). Civil engineering (General), opnet

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    1
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
1
Average
Average
Average
gold
Related to Research communities