
pmid: 18073136
Tracing the characters of very ancient proteins represents one of the biggest challenges in the study of origin of life. Although there are no primitive protein fossils remaining, the characters of very ancient proteins can be traced by molecular fossils embedded in modern proteins. In this paper, first the prior findings in this area are outlined and then a new strategy is proposed to address the intriguing issue. It is interesting to find that various molecular fossils and different protein datasets lead to similar conclusions on the features of very ancient proteins, which can be summarized as follows: (i) the architectures of very ancient proteins belong to the following folds: P-loop containing nucleoside triphosphate hydrolases (c.37), TIM beta/alpha-barrel (c.1), NAD(P)-binding Rossmann-fold domains (c.2), Ferredoxin-like (d.58), Flavodoxin-like (c.23) and Ribonuclease H-like motif (c.55); (ii) the functions of very ancient proteins are related to the metabolisms of purine, pyrimidine, porphyrin, chlorophyll and carbohydrates; (iii) a certain part of very ancient proteins need cofactors (such as ATP, NADH or NADPH) to work normally.
Evolution, Molecular, Time Factors, Models, Genetic, Proteome, Origin of Life, Genetic Variation
Evolution, Molecular, Time Factors, Models, Genetic, Proteome, Origin of Life, Genetic Variation
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 76 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
