Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ arXiv.org e-Print Ar...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Mathematics and Computers in Simulation
Article . 2025 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
zbMATH Open
Article . 2025
Data sources: zbMATH Open
DBLP
Article
Data sources: DBLP
DBLP
Article
Data sources: DBLP
versions View all 5 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Enriched physics-informed neural networks for dynamic Poisson-Nernst-Planck systems

Authors: Xujia Huang; Fajie Wang; Benrong Zhang; Hanqing Liu;

Enriched physics-informed neural networks for dynamic Poisson-Nernst-Planck systems

Abstract

This paper proposes a meshless deep learning algorithm, enriched physics-informed neural networks (EPINNs), to solve dynamic Poisson-Nernst-Planck (PNP) equations with strong coupling and nonlinear characteristics. The EPINNs takes the traditional physics-informed neural networks as the foundation framework, and adds the adaptive loss weight to balance the loss functions, which automatically assigns the weights of losses by updating the parameters in each iteration based on the maximum likelihood estimate. The resampling strategy is employed in the EPINNs to accelerate the convergence of loss function. Meanwhile, the GPU parallel computing technique is adopted to accelerate the solving process. Four examples are provided to demonstrate the validity and effectiveness of the proposed method. Numerical results indicate that the new method has better applicability than traditional numerical methods in solving such coupled nonlinear systems. More importantly, the EPINNs is more accurate, stable, and fast than the traditional physics-informed neural networks. This work provides a simple and high-performance numerical tool for addressing PNPs with arbitrary boundary shapes and boundary conditions.

Comment: 24 pages, 16 figures, 6 tables

Related Organizations
Keywords

physics-informed neural networks, 65M99, 35M33, 68T07, Computer Science - Machine Learning, adaptive loss weight method, Finite difference methods for initial value and initial-boundary value problems involving PDEs, resampling strategy, meshless method, Physics - Computational Physics, Artificial neural networks and deep learning, Spectral, collocation and related methods for initial value and initial-boundary value problems involving PDEs, Poisson-Nernst-Planck systems

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    9
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
9
Top 10%
Average
Top 10%
Green