
The novel fast iterative approach (FIA), transmit covariance optimization approach (TCOA) and decoder covariance optimization approach (DCOA) are proposed for jointly designing the minimum mean square error (MMSE) precoder and decoder of single-user multiple-input and multiple-output (MIMO) systems subject to general power constraints. Specifically, the total power constraint and the more practical per-antenna power constraint are discussed. With the rank constraint on the precoder or decoder relaxed, both the TCOA and DCOA are shown to yield the global optimum solution. The FIA is also shown to provide the global optimum solution when the transmit covariance matrix is full rank (equivalent to the TCOA) and/or the decoder covariance matrix is full rank (equivalent to the DCOA). These three approaches form a unified framwork for MMSE transceiver designs for both single-user and multiuser MIMO systems. The global optimality and comparison of the proposed three approaches are supported by numerical results.
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 1 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
