Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Clinical and Molecul...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Clinical and Molecular Hepatology
Article . 2025 . Peer-reviewed
License: CC BY NC
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Clinical and Molecular Hepatology
Article . 2025
Data sources: DOAJ
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Radiogenomics of intrahepatic cholangiocarcinoma predicts immunochemotherapy response and identifies therapeutic target

Authors: Gu-Wei Ji; Zheng-Gang Xu; Shuo-Chen Liu; Shu-Ya Cao; Chen-Yu Jiao; Ming Lu; Biao Zhang; +7 Authors

Radiogenomics of intrahepatic cholangiocarcinoma predicts immunochemotherapy response and identifies therapeutic target

Abstract

Background/Aims: Identifying patients with intrahepatic cholangiocarcinoma (ICC) likely to benefit from immunochemotherapy, the new front-line treatment, remains challenging. We aimed to unveil a novel radiotranscriptomic signature that can facilitate treatment response prediction by multi-omics integration and multiscale modelling.Methods: We analyzed bulk, single-cell and spatial transcriptomic data comprising 457 ICC patients to identify an immune-related score (IRS), followed by decoding its spatial immune context. We mapped radiomics profiles onto spatial-specific IRS using machine learning to define a novel radiotranscriptomic signature, followed by multi-scale and multi-cohort validation covering 331 ICC patients. The signature was further explored for the potential therapeutic target from in vitro to in vivo.Results: We revealed a novel 3-gene (PLAUR, CD40LG, and FGFR4) IRS whose down-regulation correlated with better survival and improved sensitivity to immunochemotherapy. We highlighted functional IRS-immune interactions within tumor epithelium, rather than stromal compartment, irrespective of geospatial locations. Machine learning pipeline identified the optimal 3-feature radiotranscriptomic signature that was well-validated by immunohistochemical assays in molecular cohort, exhibited favorable external prognostic validity with C-index over 0.64 in resection cohort, and predicted treatment response with an area under the curve of up to 0.84 in immunochemotherapy cohort. We also showed that anti-uPAR/PLAUR alone or in combination with anti-programmed cell death protein 1 therapy remarkably curbed tumor growth, using in vitro ICC cell lines and in vivo humanized ICC patient-derived xenograft mouse models.Conclusions: This proof-of-concept study sheds light on the spatially-resolved radiotranscriptomic signature to improve patient selection for emerging immunochemotherapy and high-order immunotherapy combinations in ICC.

Related Organizations
Keywords

prediction model, machine learning, intrahepatic cholangiocarcinoma, radiogenomics, Original Article, RC799-869, Diseases of the digestive system. Gastroenterology, multi-omics profiling

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    3
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
3
Top 10%
Average
Average
Green
gold