
arXiv: 2409.01416
The symbolic discovery of Ordinary Differential Equations (ODEs) from trajectory data plays a pivotal role in AI-driven scientific discovery. Existing symbolic methods predominantly rely on fixed, pre-collected training datasets, which often result in suboptimal performance, as demonstrated in our case study in Figure 1. Drawing inspiration from active learning, we investigate strategies to query informative trajectory data that can enhance the evaluation of predicted ODEs. However, the butterfly effect in dynamical systems reveals that small variations in initial conditions can lead to drastically different trajectories, necessitating the storage of vast quantities of trajectory data using conventional active learning. To address this, we introduce Active Symbolic Discovery of Ordinary Differential Equations via Phase Portrait Sketching (APPS). Instead of directly selecting individual initial conditions, our APPS first identifies an informative region within the phase space and then samples a batch of initial conditions from this region. Compared to traditional active learning methods, APPS mitigates the gap of maintaining a large amount of data. Extensive experiments demonstrate that APPS consistently discovers more accurate ODE expressions than baseline methods using passively collected datasets.
Computer Science - Symbolic Computation, FOS: Computer and information sciences, Computer Science - Machine Learning, Symbolic Computation (cs.SC), Machine Learning (cs.LG)
Computer Science - Symbolic Computation, FOS: Computer and information sciences, Computer Science - Machine Learning, Symbolic Computation (cs.SC), Machine Learning (cs.LG)
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
