Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ arXiv.org e-Print Ar...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
https://dx.doi.org/10.48550/ar...
Article . 2024
License: CC BY
Data sources: Datacite
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Active Symbolic Discovery of Ordinary Differential Equations via Phase Portrait Sketching

Authors: Jiang, Nan; Nasim, Md; Xue, Yexiang;

Active Symbolic Discovery of Ordinary Differential Equations via Phase Portrait Sketching

Abstract

The symbolic discovery of Ordinary Differential Equations (ODEs) from trajectory data plays a pivotal role in AI-driven scientific discovery. Existing symbolic methods predominantly rely on fixed, pre-collected training datasets, which often result in suboptimal performance, as demonstrated in our case study in Figure 1. Drawing inspiration from active learning, we investigate strategies to query informative trajectory data that can enhance the evaluation of predicted ODEs. However, the butterfly effect in dynamical systems reveals that small variations in initial conditions can lead to drastically different trajectories, necessitating the storage of vast quantities of trajectory data using conventional active learning. To address this, we introduce Active Symbolic Discovery of Ordinary Differential Equations via Phase Portrait Sketching (APPS). Instead of directly selecting individual initial conditions, our APPS first identifies an informative region within the phase space and then samples a batch of initial conditions from this region. Compared to traditional active learning methods, APPS mitigates the gap of maintaining a large amount of data. Extensive experiments demonstrate that APPS consistently discovers more accurate ODE expressions than baseline methods using passively collected datasets.

Related Organizations
Keywords

Computer Science - Symbolic Computation, FOS: Computer and information sciences, Computer Science - Machine Learning, Symbolic Computation (cs.SC), Machine Learning (cs.LG)

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Green