
arXiv: 2212.07119
Intersection graphs are well-studied in the area of graph algorithms. Some intersection graph classes are known to have algorithms enumerating all unlabeled graphs by reverse search. Since these algorithms output graphs one by one and the numbers of graphs in these classes are vast, they work only for a small number of vertices. Binary decision diagrams (BDDs) are compact data structures for various types of data and useful for solving optimization and enumeration problems. This study proposes enumeration algorithms for five intersection graph classes, which admit $\mathrm{O}(n)$-bit string representations for their member graphs. Our algorithm for each class enumerates all unlabeled graphs with $n$ vertices over BDDs representing the binary strings in time polynomial in $n$. Moreover, our algorithms are extended to enumerate those with constraints on the maximum (bi)clique size and/or the number of edges.
Accepted to the 17th International Conference and Workshops on Algorithms and Computation (WALCOM 2023)
FOS: Computer and information sciences, Computer Science - Data Structures and Algorithms, Data Structures and Algorithms (cs.DS)
FOS: Computer and information sciences, Computer Science - Data Structures and Algorithms, Data Structures and Algorithms (cs.DS)
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
