Powered by OpenAIRE graph
Found an issue? Give us feedback
addClaim

A decomposition based multiobjective evolutionary algorithm with semi-supervised classification

Authors: Xiaoji Chen; Chuan Shi 0001; Aimin Zhou; Bin Wu 0001; Zixing Cai;

A decomposition based multiobjective evolutionary algorithm with semi-supervised classification

Abstract

In multiobjective evolutionary algorithms, how to select the optimal solutions from the offspring candidate set significantly affects the optimization process. Usually, the selection process is largely based on the real objective values or surrogate model estimating objective values. However, these selection processes are very time consuming sometimes, especially for some real optimization problems. Recently, some researches began to employ supervised classification to assist offspring selection, but these works are difficult to prepare the exact positive and negative samples or time consuming of parameter tuning problems. In order to solve these disadvantages, we propose a decomposition based multiobjective evolutionary algorithm with semi-supervised classification. This approach using random sampling and non-dominated sorting to construct semi supervised classifier. In each generation, a set of candidate solutions are generated for each subproblem and only good solutions are reserved by classifier. If there is more than one good solutions, we calculate each of good solutions by real objective function and choose the best one as the offspring solution. Based on the typical decomposition based multiobjective evolutionary algorithm MOEA/D, we design algorithm framework through integrating the novel offspring selection process based on semi-supervised classification. Experiments show that the proposed algorithm performs best in most test cases and improves the performance of MOEA/D.

Related Organizations
  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    3
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
3
Average
Average
Average
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!