Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao https://doi.org/10.1...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
DBLP
Conference object
Data sources: DBLP
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

PARMA

a parallel randomized algorithm for approximate association rules mining in MapReduce
Authors: Matteo Riondato; Justin A. DeBrabant; Rodrigo Fonseca; Eli Upfal;
Abstract

Frequent Itemsets and Association Rules Mining (FIM) is a key task in knowledge discovery from data. As the dataset grows, the cost of solving this task is dominated by the component that depends on the number of transactions in the dataset. We address this issue by proposing PARMA, a parallel algorithm for the MapReduce framework, which scales well with the size of the dataset (as number of transactions) while minimizing data replication and communication cost. PARMA cuts down the dataset-size-dependent part of the cost by using a random sampling approach to FIM. Each machine mines a small random sample of the dataset, of size independent from the dataset size. The results from each machine are then filtered and aggregated to produce a single output collection. The output will be a very close approximation of the collection of Frequent Itemsets (FI's) or Association Rules (AR's) with their frequencies and confidence levels. The quality of the output is probabilistically guaranteed by our analysis to be within the user-specified accuracy and error probability parameters. The sizes of the random samples are independent from the size of the dataset, as is the number of samples. They depend on the user-chosen accuracy and error probability parameters and on the parallel computational model. We implemented PARMA in Hadoop MapReduce and show experimentally that it runs faster than previously introduced FIM algorithms for the same platform, while 1) scaling almost linearly, and 2) offering even higher accuracy and confidence than what is guaranteed by the analysis.

Related Organizations
  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    74
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
74
Top 10%
Top 10%
Top 10%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!