Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Academic Pediatricsarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Academic Pediatrics
Article . 2024 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Adolescent, Parent, and Provider Perceptions of a Predictive Algorithm to Identify Adolescent Suicide Risk in Primary Care

Authors: Molly Davis; Gillian C. Dysart; Stephanie K. Doupnik; Megan E. Hamm; Karen T.G. Schwartz; Brandie George-Milford; Neal D. Ryan; +4 Authors

Adolescent, Parent, and Provider Perceptions of a Predictive Algorithm to Identify Adolescent Suicide Risk in Primary Care

Abstract

To understand adolescent, parent, and provider perceptions of a machine learning algorithm for detecting adolescent suicide risk prior to its implementation primary care.We conducted semi-structured, qualitative interviews with adolescents (n = 9), parents (n = 12), and providers (n = 10; mixture of behavioral health and primary care providers) across two major health systems. Interviews were audio recorded and transcribed with analyses supported by use of NVivo. A codebook was developed combining codes derived inductively from interview transcripts and deductively from implementation science frameworks for content analysis.Reactions to the algorithm were mixed. While many participants expressed privacy concerns, they believed the algorithm could be clinically useful for identifying adolescents at risk for suicide and facilitating follow-up. Parents' past experiences with their adolescents' suicidal thoughts and behaviors contributed to their openness to the algorithm. Results also aligned with several key Consolidated Framework for Implementation Research domains. For example, providers mentioned barriers inherent to the primary care setting such as time and resource constraints likely to impact algorithm implementation. Participants also cited a climate of mistrust of science and health care as potential barriers.Findings shed light on factors that warrant consideration to promote successful implementation of suicide predictive algorithms in pediatric primary care. By attending to perspectives of potential end users prior to the development and testing of the algorithm, we can ensure that the risk prediction methods will be well-suited to the providers who would be interacting with them and the families who could benefit.

Keywords

Male, Parents, Suicide Prevention, Adult, Adolescent, Primary Health Care, Attitude of Health Personnel, Risk Assessment, Suicidal Ideation, Machine Learning, Suicide, Humans, Female, Algorithms, Qualitative Research

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    5
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
5
Top 10%
Average
Top 10%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!