
handle: 11572/67427 , 11572/95279
In this paper, given a relational database, we automatically translate a natural language question into an SQL query retrieving the correct answer. We exploit the structure of the DB to generate a set of candidate SQL queries, which we rerank with a SVM-ranker based on tree kernels. In particular we use linguistic dependencies in the natural language question and the DB metadata to build a set of plausible SELECT, WHERE and FROM clauses enriched with meaningful joins. Then, we combine all the clauses to get the set of all possible SQL queries, producing candidate queries to answer the question. This approach can be recursively applied to deal with complex questions, requiring nested queries. We sort the candidates in terms of scores of correctness using a weighting scheme applied to the query generation rules. Then, we use a SVM ranker trained with structural kernels to reorder the list of question and query pairs, where both members are represented as syntactic trees. The f-measure of our model on standard benchmarks is in line with the best models (85% on the first question), which use external and expensive hand-crafted resources such as the semantic interpretation. Moreover, we can provide a set of candidate answers with a Recall of the answer of about 92% and 96% on the first 2 and 5 candidates, respectively.
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 4 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
