Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Vìsnik Nacìonalʹnogo...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Digital Signal Extraction by Means of Nonlinear Stochastic Filtration

Authors: Kharchenko, O. I.; Kartashov, V. M.;

Digital Signal Extraction by Means of Nonlinear Stochastic Filtration

Abstract

The results of noise immunity analysis for digital communication systems using methods of nonlinear filtering are given. Nonlinear filtration is based on stochastic resonance effect. The stochastic resonance is given to a phenomenon that is manifest in nonlinear systems where by generally feeble input information (such as a weak signal) can be amplified and optimized by the assistance of noise. The stochastic resonance has been observed in a large variety of systems, including bistable ring lasers, semiconductor devices, chemical reactions, and mechanoreceptor cells in the tail fan of a crayfish. Numeral simulation of response at affecting input of the system on additive mixture of harmonic signal and white Gaussian noise are given. Amplitude spectrum of this output signal has been investigated. Results of the output signal-to-noise ratio calculation of the stochastic filter for the additive sum of a harmonic signal and white Gaussian noise for different values of the input noise dispersion are given. It is shown that the output signal-to-noise ratio of the system will peak at a certain value of noise intensity under a action of the input signal and noise. It is shown that the stochastic resonance effect provides separation of a digital signal from the white Gaussian noise. The comparative analysis of noise immunity of the matched filter and nonlinear stochastic filter for input square pulses are given. The effects of signal distortions in nonlinear processing with a stochastic filter are considered. Calculations of the coefficient of nonlinear distortions of a rectangular pulse are performed. It is shown that nonlinear distortions lead to a decrease in the signal-to-noise ratio at the output of the filter.

Keywords

stochastic resonance; signal-to-noise ratio; filter; nonlinear stochastic filter; matched filter; digital signal; dispersion; white Gaussian noise; nonlinear distortions, filter, digital signal, стохастичний резонанс; співвідношення сигнал-шум; фільтр; нелінійний стохастичний фільтр; узгоджений фільтр; цифровий сигнал; дисперсія; білий гаусовий шум; нелінійні спотворення, 621.372(075), стохастический резонанс; отношение сигнал шум; фильтр; нелинейный стохастический фильтр; согласованный фильтр; цифровой сигнал; дисперсия; белый гауссовский шум; нелинейные искажения, Telecommunication, stochastic resonance, signal-to-noise ratio, nonlinear stochastic filter, TK5101-6720, matched filter

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
gold