
handle: 10525/4483
Computers control everyday things ranging from the heart pacemakers to voice controlled devices that form an integral part of many appliances. Failures related to computers regularly cause disruption, damage and occasionally death. Computational logic establishes the facts in a logical formalism. It attempts to understand the nature of mathematical reasoning with a wide variety of formalisms, techniques and technologies. Formal verification uses mathematical and logical formalisms to prove the correctness of designs. Formal methods provide the maturity and agility to assimilate the future concepts, languages, techniques and tools for computational methods and models. The quest for simplification of formal verification is never ending. This summary report advocates the use of geometry to construct quick conclusions by the human mind that can be formally verified if necessary.
Computational Logic, Design, 160, Geometry, Formal Verification, Simplification
Computational Logic, Design, 160, Geometry, Formal Verification, Simplification
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
