
handle: 11311/1086339
A common issue of seismic data analysis consists in the lack of regular and densely sampled seismic traces. This problem is commonly tackled by rank optimization or statistical features learning algorithms, which allow interpolation and denoising of corrupted data. In this paper, we propose a completely novel approach for reconstructing missing traces of pre-stack seismic data, taking inspiration from computer vision and image processing latest developments. More specifically, we exploit a specific kind of convolutional neural networks known as convolutional autoencoder. We illustrate the advantages of using deep learning strategies with respect to state-of-the-art by comparing the achieved results over a well-known seismic dataset.
Geophysics
Geophysics
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 84 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 1% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
