Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Mathematicsarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Mathematics
Article . 2025 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Mathematics
Article . 2025
Data sources: DOAJ
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Incorporation of Histogram Intersection and Semantic Information into Non-Negative Local Laplacian Sparse Coding for Image Classification

Authors: Ying Shi; Yuan Wan; Xinjian Wang; Huanhuan Li;

Incorporation of Histogram Intersection and Semantic Information into Non-Negative Local Laplacian Sparse Coding for Image Classification

Abstract

Traditional sparse coding has proven to be an effective method for image feature representation in recent years, yielding promising results in image classification. However, it faces several challenges, such as sensitivity to feature variations, code instability, and inadequate distance measures. Additionally, image representation and classification often operate independently, potentially resulting in the loss of semantic relationships. To address these issues, a new method is proposed, called Histogram intersection and Semantic information-based Non-negativity Local Laplacian Sparse Coding (HS-NLLSC) for image classification. This method integrates Non-negativity and Locality into Laplacian Sparse Coding (NLLSC) optimisation, enhancing coding stability and ensuring that similar features are encoded into similar codewords. In addition, histogram intersection is introduced to redefine the distance between feature vectors and codebooks, effectively preserving their similarity. By comprehensively considering both the processes of image representation and classification, more semantic information is retained, thereby leading to a more effective image representation. Finally, a multi-class linear Support Vector Machine (SVM) is employed for image classification. Experimental results on four standard and three maritime image datasets demonstrate superior performance compared to the previous six algorithms. Specifically, the classification accuracy of our approach improved by 5% to 19% compared to the previous six methods. This research provides valuable insights for various stakeholders in selecting the most suitable method for specific circumstances.

Related Organizations
Keywords

semantic information, sparse coding, QA1-939, support vector machine, image representation, Mathematics, image classification

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    1
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
1
Average
Average
Average
gold
Related to Research communities