
In this paper, we consider the problem of mesh router placement in a wireless mesh network (WMN). The latter is an emerging networking technology consisting of three kinds of nodes: mesh clients, mesh routers and gateways. Mesh routers form a backbone to forward data between client nodes and the external network. Therefore, the optimization of mesh routers positions strongly influences the performance of the WMN. Since this issue has already been proved as being computationally NP-hard to solve, the use of non-exact methods (such as heuristics and metaheuristics) is indispensable. In this sense, our current work consists to apply and adapt the electromagnetism-like mechanism (EM) metaheuristic to solve the router node placement issue. The idea is to consider a population of solutions encoded as particles subject to attractions and repulsions as in electromagnetic systems. Finally, we have evaluated our proposed approach by simulating different scenarios under various settings. The obtained results indicate that the proposed EM algorithm outperforms the existing particle swarm intelligence algorithm and genetic algorithm in defining near optimal positions for mesh routers with regard to coverage and connectivity.
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 15 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
