Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Recep Tayyip Erdoğan...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Asian Journal of Civil Engineering
Article . 2025 . Peer-reviewed
License: Springer Nature TDM
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

The anticipation of compressive strength of geopolymer mortars with tree-based machine learning models: effect of training-testing ratios

Authors: Çakmak, Talip; Ustabaş, İlker;

The anticipation of compressive strength of geopolymer mortars with tree-based machine learning models: effect of training-testing ratios

Abstract

Concrete, produced from cement, is the best greatly utilised building material. However, greenhouse gas discharges from cement preparation and consumption cause significant damage to the environment. Geopolymer production, which is one of the important alternatives, plays an important role in preventing this problem. In this study, tree-based machine learning (ML) algorithms such as Gradient Boosting Regression (GBR), Decision Tree (DT), Extremely Randomized Tree (ET), and Random Forest (RF) were utilized to anticipate the compressive strength (CS) of silica fume substituted obsidian-based two-component geopolymer mortars with different alkali activator properties. These ML algorithms were implemented using different train-test ratios (0.6 − 0.4, 0.7 − 0.3, 0.8 − 0.2, 0.9 − 0.1). The prediction and generalization performances of the applied models were measured by applying different statistical metrics like R2, MAE, MAPE, MSE and RMSE. For the prediction of compressive strength, the GBR algorithm showed a better prediction performance than the other algorithms, with an R2 value of 0.972. The RF algorithm showed the most consistent and balanced prediction performance. Significant decreases in R2adjusted values were observed as the training rate increased. This is due to the tendency of the models to overlearn as the training rate increases. The results show that the models perform best at a training rate of 70%, and the generalization execution of the models reduces importantly as the training rate augments. The machine learning method applied to the forecasting of the CS of geopolymer mortars provides significant benefits to engineering applications due to its contributions in terms of workload and time savings.

Related Organizations
Keywords

Obsidian, Sustainability, Machine learning, Compressive strength, Silica fume, Geopolymer

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    1
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
1
Average
Average
Average
Green
Related to Research communities