Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao https://doi.org/10.1...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
https://doi.org/10.1109/ieeeco...
Article . 2019 . Peer-reviewed
License: IEEE Copyright
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Deep Encoder-Decoder Neural Network Architectures for Graph Output Signals

Authors: Rey, S; Tenorio, V; Rozada, S; Martino, L; Marques, AG;

Deep Encoder-Decoder Neural Network Architectures for Graph Output Signals

Abstract

Neural networks (NNs) and graph signal processing have emerged as important actors in data-science applications dealing with complex (non-linear, non-Euclidean) datasets. In this work, we introduce a novel graph-aware NN architecture to learn the mapping between graph signals that are defined on two different graph datasets. The novel proposed architecture is based on two NNs and a common latent space. In particular, we consider an underparametrized graph-aware NN encoder that maps the input graph signal to a latent space, followed by an underparametrized graph-aware NN decoder which maps the latent representation to the output graph signal. The parameters of the two NN are jointly learned by using a training set and the back-propagation algorithm. The resulting architecture can then be viewed as an underparametrized graph-aware encoder/decoder NN operating over two different graphs. The proposed scheme outperforms the corresponding benchmark NN architectures in the literature.

Keywords

Graph Autoencoders, Non-Euclidean Data, Nonlinear Canonical Correlation Analysis (CCA), Graph Neural Networks, Geometric Deep Learning

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    4
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
4
Top 10%
Average
Average
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!