Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Review of Managerial...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Review of Managerial Science
Article . 2024 . Peer-reviewed
License: CC BY
Data sources: Crossref
EconStor
Article . 2024
License: CC BY
Data sources: EconStor
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Consumer responses to human-AI collaboration at organizational frontlines: strategies to escape algorithm aversion in content creation

Authors: Martin Haupt; Jan Freidank; Alexander Haas;

Consumer responses to human-AI collaboration at organizational frontlines: strategies to escape algorithm aversion in content creation

Abstract

Abstract Although Artificial Intelligence can offer significant business benefits, many consumers have negative perceptions of AI, leading to negative reactions when companies act ethically and disclose its use. Based on the pervasive example of content creation (e.g., via tools like ChatGPT), this research examines the potential for human-AI collaboration to preserve consumers' message credibility judgments and attitudes towards the company. The study compares two distinct forms of human-AI collaboration, namely AI-supported human authorship and human-controlled AI authorship, with traditional human authorship or full automation. Building on the compensatory control theory and the algorithm aversion concept, the study evaluates whether disclosing a high human input share (without explicit control) or human control over AI (with lower human input share) can mitigate negative consumer reactions. Moreover, this paper investigates the moderating role of consumers’ perceived morality of companies’ AI use. Results from two experiments in different contexts reveal that human-AI collaboration can alleviate negative consumer responses, but only when the collaboration indicates human control over AI. Furthermore, the effects of content authorship depend on consumers' moral acceptance of a company's AI use. AI authorship forms without human control lead to more negative consumer responses in case of low perceived morality (and no effects in case of high morality), whereas messages from AI with human control were not perceived differently to human authorship, irrespective of the morality level. These findings provide guidance for managers on how to effectively integrate human-AI collaboration into consumer-facing applications and advises to take consumers' ethical concerns into account.

Keywords

Artificial intelligence, O33, Human-AI collaboration, AI ethics, Algorithm aversion, ddc:650, L86, C91, M31, Content creation, AI augmentation

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    23
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
23
Top 10%
Average
Top 10%
hybrid